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Abstract. In this paper some problems experienced during studies combining real
space and tight binding methods are addressed. These methods have been mainly
used for studying the magnetic properties of thin films deposited on substrates and
of multilayers taking into account interfacial imperfections. This paper is illustrated
with calculations of the electronic structure of Fe/Cr multilayered systems which are
particularly interesting. First, the use of d and spd tight binding parameterisations of
the electronic structure for transition metals and its relation to the recursion technique
is discussed. Second, some advantages of using real space cells for studying complex
systems are presented. Finally, the application of these methods for systems presenting
non-collinear magnetism is discussed.

1 Introduction

During the last ten years, the electronic structure of large and complex metallic
systems has been extensively studied mainly due to the enhancement of the
computer facilities. Powerful computers with large memories became available
allowing to reach rapidly self consistency in the band structure calculations for
cells containing up to a few hundred of heavy atoms. One of these kinds of
systems, concerns the metallic multilayers presenting new magnetic properties
like the Interlayer Magnetic Coupling (IMC) or the Giant Magneto Resistance
(GMR) effect particularly interesting for applications. This paper deals with the
use of the real space recursion technique for the study of the magnetic order in
such metallic multilayers.

The multilayered AmBn system built by alternating a m monolayers thick
A layer with a n monolayers thick B layer consists in a long elemental chemical
cell containing, in the simplest case, one non equivalent atom in the in plane
cell and m + n atoms in the growth direction perpendicular to the plane of
the layers. Because these multilayers are periodic in the 3 directions of space,
the band structure is usually calculated in the k space of the reciprocal lattice.
However, since the aim of more complete studies is usually to determine the
magnetic properties for thin overlayers during the growth of the multilayer, to
include interfacial imperfections, to relate the growth mode and the magnetic
behaviour, ... a real space technique is used in order to have the possibility to
calculate the electronic structure of all these situations with the same method.

The aim of this paper is to discuss possible problems and solutions used
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during various studies of the Fe/Cr multilayered system. A d restricted tight
binding modelling of the band structure has been first used mainly because
it needs less computer time than a full spd description and allows to use an
exact cluster for the recursion technique. More recently, due to physical lacks
in some results, the description has been extended taking the spd hybridisation
into account. However, in order to reduce the computer time, clusters smaller
than the exact one are used for the calculation. In the first section, some possible
choices for the shape of these “inexact” clusters are given and their use for large
cells like the one of multilayers is discussed. In the second section, the advantages
of using real space cells for studying such complex systems are discussed. Finally,
in the last section, the application of these methods for systems presenting non-
collinear magnetism is presented.

2 Tight Binding Parameterisation
and Recursion Technique

2.1 The Recursion Technique

This method, proposed by Haydock and Heine [1–3], is well suited for the deter-
mination of the electronic structure when (i) the Hamiltonian H can be expressed
in a finite basis of localized orbital |i, λ〉 of symmetry λ on the site i (like the
one considered in the next subsection) and (ii) when the knowledge of the Green
function Gi,λ(z) = 〈i, λ|G(z)|i, λ〉 = 〈i, λ|(z − H)−1|i, λ〉 elements is sufficient
for the calculation of the band structure. For example, this method applies to
situations presenting no symmetry like amorphous or disordered systems, aro-
und impurities or structural imperfections.

For each given site and symmetry (i, λ), a new basis |n} is built in order
to have a tridiagonal matrix for the representation of H in this new basis. The
basis |n} is recursively obtained starting from the |i, λ〉 basis function with the
following expressions:

|0} = |i, λ〉
|1} = H|0} − ai,λ

1 |0} (1)

|n + 1} = H|n} − ai,λ
n+1|n} − bi,λ

n |n − 1}.

The sets (ai,λ
n , bi,λ

n ) are called the recursion coefficients. They are easily obtained
by calculations of simple scalar products:

ai,λ
n+1 =

{n|H|n}
{n|n}

bi,λ
n+1 =

{n|H|n + 1}
{n|n} =

{n + 1|n + 1}
{n|n} . (2)

The orthonormalized recursion basis is then obtained by:

|n〉 =
|n}√
{n|n}

(3)
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and the recursion coefficients correspond to:

ai,λ
n+1 = 〈n|H|n〉√
bi,λ
n+1 = 〈n|H|n + 1〉 = 〈n + 1|H|n〉. (4)

The desired tridiagonal matrix representation of H is consequently obtained:

H =




ai,λ
1

√
bi,λ
1 0√

bi,λ
1 ai,λ

2

√
bi,λ
2√

bi,λ
2 ai,λ

3

√
bi,λ
3√

bi,λ
3 ai,λ

4
. . .

0 . . . . . .




. (5)

Since |i, λ〉 = |0〉, the Green function Gi,λ(z) is equal to 〈0|(z − H)−1|0〉 which
corresponds to the first element [(z − H)−1]00 of the inverse matrix of (z −
H). This particular element is easily obtained by considering the determinants
det(z − Hn) = ||z − Hn|| where Hn is the part of the H matrix limited to the
elements {|n〉, |n + 1〉, |n + 2〉, ...} of the recursion basis,

Hn =




ai,λ
n+1

√
bi,λ
n+1 0√

bi,λ
n+1 ai,λ

n+2

√
bi,λ
n+2√

bi,λ
n+2 ai,λ

n+3

√
bi,λ
n+3√

bi,λ
n+3 ai,λ

n+4
. . .

0 . . . . . .




. (6)

The desired Green function is then equal to

Gi,λ(z) =
||z − H1||
||z − H0||

=
||z − H1||

(z − ai,λ
1 )||z − H1|| − bi,λ

1 ||z − H2||

=
1

z − ai,λ
1 − bi,λ

1
||z−H2||
||z−H1||

(7)

corresponding to the continuous fraction expansion

Gi,λ(z) =
1

z − ai,λ
1 − bi,λ

1

z−ai,λ
2 − b

i,λ
2

z−a
i,λ
3 − b

i,λ
3

z−a
i,λ
4 − b

i,λ
4

...

. (8)
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An analytical expression of the Green function is then obtained. However, an
exact determination of Gi,λ(z) requires an infinite number of recursion coeffi-
cients which is never the case in practical calculations. Usually, only a few levels
(N pairs of (an, bn) coefficients) of the continuous fraction are determined and
the missing part of the fraction expansion is replaced by a terminator function
Σi,λ(z). The continuous fraction expansion becomes

Gi,λ(z) =
1

z − ai,λ
1 − bi,λ

1

z−ai,λ
2 − b

i,λ
2

z−a
i,λ
3 − b

i,λ
3

...
z−a

i,λ
N

− b
i,λ
N

Σi,λ(z)

. (9)

For energy bands presenting no gap, the recursion coefficients have asymptotic
limits corresponding to (ai,λ

∞ , bi,λ
∞ ). The most easy way to determine Σi,λ(z) is to

assume that for n > N the recursion coefficients are equal to their asymptotic
values. The terminator function is then equal to:

Σi,λ(z) = z − ai,λ
∞ − bi,λ

∞
z − ai,λ∞ − bi,λ

∞

z−ai,λ
∞ − b

i,λ∞
...

= z − ai,λ
∞ − bi,λ

∞
Σi,λ(z)

. (10)

The solution of this equation gives the square root expression of the terminator
function:

Σi,λ(z) =
z − ai,λ

∞ ±
√

(z − ai,λ∞ )2 − 4bi,λ∞
2

. (11)

The Beer-Pettifor method is used [4] to determine (ai,λ
∞ , bi,λ

∞ ) which is based
on the calculation of the band limits (εmin, εmax) given by (ai,λ

∞ − 2
√
bi,λ∞ , ai,λ

∞ +
2
√
bi,λ∞ ). When the continuous fraction is truncated at the level N , the projected

density of states (PDOS)

ni,λ(ε) = − 1
π

Im(Gi,λ(ε + i0)) (12)

corresponds to a sum of Dirac functions and the band limits can be identified by
the energies of the lowest and highest Dirac functions. This method is extremely
easy to use and, because it needs only to determine the diagonal representation of
relatively small matrices, is also rapid and numerically stable. However, because
the band limits correspond to Dirac functions, using the exact values obtained
by this method gives usually diverging values for the PDOS near the band limits.
Since the band width is underestimated by this method (due to the truncation
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of the continuous fraction), this problem can be nicely solved by enlarging the
calculated band by 1%. One way to check the efficiency of this method for the
determination of the terminator function is to verify that the PDOS are correctly
normalized which is usually the case with an error smaller that 10−5.

For each level of the recursion calculation (2), the hamiltonian H is applied
on the n-th element |n} of the new basis. This adds to the expression of |n+ 1}
all new “neighbours” linked through H of all sites included in the expression of
|n}. In other words, at each level of the recursion calculation, the contribution
of the n-th shell of “neighbours” of the starting site |i, λ〉 is taken into account.
Consequently, the number of sites needed for calculating N exact levels of the
continuous fraction (or N exact pairs of recursion coefficients) is proportional to
N3 [5].

2.2 Tight Binding Hamiltonian

In the Linear Combination of Atomic Orbitals method, the one-electron wave
function |Ψ〉 is expressed as a linear combination of localized atomic orbital |i, λ〉
on site i and spin-symmetry λ:

|Ψ〉 =
∑
i,λ

ci,λ|i, λ〉. (13)

Solving Schroedinger equation becomes the eigen-value problem∑
i,λ

ci,λ(〈j, µ|H|i, λ〉 − ε〈j, µ|i, λ〉) = 0

∑
i,λ

ci,λ(Hλ,µ
i,j − εSλ,µ

i,j ) = 0. (14)

The overlap matrix Sλ,µ
i,j plays an essential role when the atomic orbital can not

be assumed as being orthogonal [6]. In this work, it is assumed that S is equal
to identity Sλ,µ

i,j = δi,jδλ,µ. The hamiltonian can then be directly expressed in
the atomic orbital basis

H =
∑

(i,λ),(j,µ)

|j, µ〉Hλ,µ
i,j 〈i, λ| (15)

which can be split into intrasite and intersite terms

H =
∑
i,λ,µ

|i, µ〉εi,λ,µ〈i, λ| +
∑

(i,λ),(j �=i,µ)

|j, µ〉βλ,µ
i,j 〈i, λ|. (16)

εi,λ,µ are the on-site energy levels and βλ,µ
i,j are the two-center hopping inte-

grals linking sites i and j. In order to reduce the numbers of parameters of the
hamiltonian, the on-site energy levels are assumed to be equal to

εi,λ,µ =
(
ε0i,λ + Ui,l(λ)∆Ni,l(λ) + σλ

Ii,l(λ)Mi,l(λ)

2

)
δλ,µ (17)
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where ε0i,λ, Ui,l(λ), ∆Ni,l(λ) and Ii,l(λ) are respectively the spin independent
energy level reference, the effective Coulomb integral, the charge variation and
the effective Exchange integral of site i, Mi,l(λ) is the local magnetic moment,
l(λ) and σλ being respectively the orbital quantum number (corresponding to s,
p or d states) and the spin of the spin-symmetry λ. The charge variation ∆Ni,l(λ)
and the local magnetic moment Mi,l(λ) are obtained from the PDOS by

∆Ni,l =
∑

λ

δl(λ),l

∫ εF

ni,λ(ε)dε − N0
i,l (18)

where N0
i,l is the bulk l band occupation of site i and

Mi,l =
∑

λ

δl(λ),l

∫ εF

(δσλ,+ni,λ(ε) − δσλ,−ni,λ(ε))dε (19)

Equations (17), (18) and (19) define the self consistency solution. The input
charge variations and magnetic moments allow to calculate the input energy
levels of the hamiltonian for which the output PDOS are determined and in-
tegrated to obtain the output charge variations and magnetic moments. Self
consistency is reached when input and output quantities do not more differ sig-
nificantly.

Usually, four energy levels ε0s, ε
0
p, ε

0
Eg

and ε0T2g
are needed for each site and the

hopping integrals βλ,µ
i,j between each pair of sites are expressed in terms of ten

simple Slater-Koster matrix elements [7] ssσ, spσ, sdσ, ppσ, ppπ, pdσ, pdπ, ddσ,
ddπ and ddδ. It has been shown that a good description of the band structure
can be obtained by limiting the hopping integrals to nearest neighbours pairs of
sites. Various sets of hopping integrals for a given element can be found in the
literature showing that the Slater-Koster matrix elements do not have an unique
value [8].

As an illustration, the density of states (DOS) obtained using the Slater-
Koster parameters deduced by fitting ab initio band structure calculations by
Papaconstantopoulos [9] and those obtained using the TB-LMTO method by
Andersen et al [10] are compared. Fig. 1 shows the DOS obtained for bulk non
magnetic Chromium using these two sets of parameters. The d bands are very
similar for both calculations. For the s and p DOS, if the bottom of the bands for
both calculations are very similar, the DOS differ significantly for higher energies
(larger than 15 eV). Due to the finite band width of tight binding DOS, the band
structure shows non physical structures at high energies for all sets of parame-
ters. However, with tight binding parameters taken from Papaconstantopoulos,
the total band width (W ) is approximately equal to 45 eV whereas with the
second set of parameters W is approximately equal to 25 eV. Since the energy
resolution of the DOS calculated with the recursion method is proportionnal
to W divided by the number of levels, the larger W is, the smaller the energy
resolution of the DOS - for a same number of recursion levels - is. Consequently,
the d DOS - which is the most important for itinerant magnetism properties -
exhibits more fine structures when W is smaller (Fig. 1.b) than for the other
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Fig. 1. s, p, d and total (bold line) densities of states obtained with 24 exact levels of the
continuous fraction for bulk non magnetic Chromium with tight binding parameters
taken from a. Papaconstantopoulos [9] and b. Andersen et al [10]

calculation (Fig. 1.a). It is then essential to choose tight binding parameters
giving the smallest total band width in order to describe more precisely the d
band of transition metals around the Fermi level. This is why, in the following,
the tight binding parameters deduced by Andersen et al [10] are used.

2.3 Clusters for the Recursion Method

It has been shown previously that, for each additional level of the recursion
fraction, the next shell of “neighbours” of the starting site |0} is taken into
account. For the calculation of Nexact recursion levels, we have to built a cluster
containing all sites which will contribute. This exact cluster correspond to all
sites geometrically included in the Nexact-th shell of “neighbours”. The shape of
the exact cluster depends on the crystallographic structure and the cut-off rc of
the hopping integrals ( βλ,µ

i,j = 0 when |ri −rj | > rc) which can be approximated
by a sphere centered on the starting site of radius R = R∗ = Nexact.rc (this
sphere contains the exact cluster). The number of sites Nsite included in the
sphere increases with Nexact like N3

exact and the computation time increases in
the same way. This is why, in most cases smaller clusters are used. However, the
recursion coefficients are affected by the size and the shape of these “inexact”
clusters.

As an illustration, cubic and spherical “inexact” clusters are built and the
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DOS obtained for various cluster sizes are compared. The minimal cubic cluster
containing the exact cluster includes all sites i verifying |xi| < a/2, |yi| < a/2,
|zi| < a/2 with a = a∗ = 2Nexact.rc. “Inexact” clusters are built with a smaller
radius for spheres or a smaller edge for cubes. They are defined by the ratio
ρ = R/R∗ for spherical clusters and ρ = a/a∗ for cubic ones.

Tables 1 and 2 present some characteristics of such “inexact” clusters and
Figs. 2 and 3 display the DOS obtained for two of these examples. These results
(Tables 1 and 2) shows that, as expected, for a similar number of sites in the
clusters, the number of exact levels obtained during the calculation of 24 levels, is
larger for a spherical cluster than for a cubic one. However, the comparison with
the exact calculation (Fig. 1.b) shows that the DOS (Figs. 2 and 3) obtained with
spherical clusters exhibit more non physical peaks (mainly near the bottom of the
DOS) than the others; these peaks are mostly found in the s band. This can be
easily understood because the spherical cluster is a much better approximation
of the exact cluster than a cube and consequently the missing sites correspond
to complete shells whereas, for cubic cluster, they correspond to fractions of
shells. During the calculation of successive levels, the missing sites have a more
progressive impact when cubic clusters are used than with spherical ones for
which the impact occurs abruptly at a given level. In this work, cubic clusters
are used, in order to keep the cubic symmetry of the considered crystals, with
ρ = 0.25 and the DOS are determined with 24 levels in the continuous fraction.
Of course, for other crystals, other “inexact” (non spherical) clusters have to be
consider.

The previous considerations on the cluster shape have been done for bulk

Table 1. Some examples of “inexact” cubic clusters for various ratio ρ. The number
of exact recursion levels and the computation time required for calculating 24 levels
are displayed; the cluster built with ρ = 1 contains the exact cluster needed for the
calculation of 24 exact recursion levels

Linear scale Number Number of Computation

ratio ρ of atoms exact levels time (s)

0.167 855 5 16

0.25 3925 11 38

0.5 29449 24a 238

1 228241 24 6106

a differences between calculated and exact coefficients smaller than 10−10.

situation for which there is only one non equivalent atom in the unit cell. For
cells containing a large number of non equivalent sites, there are two possible
ways to build an “inexact” cluster (Fig. 4): (i) building a set of cubic clusters
centered on each non equivalent site or (ii) building an unique cluster by joining
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Table 2. Some examples of “inexact” spherical clusters for various ratio ρ. The number
of exact recursion levels and the computation time required for calculating 24 levels
are displayed; the cluster built with ρ = 1 contains the exact cluster needed for the
calculation of 24 exact recursion levels

Linear scale Number Number of Computation

ratio ρ of atoms exact levels time (s)

0.195 869 6 16

0.325 3942 15 40

0.635 29627 24a 250

1 115633 24 1556

a differences between calculated and exact coefficients smaller than 10−10.
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Fig. 2. s, p, d and total (bold line) densities of states obtained with 24 levels of the
continuous fraction for bulk non magnetic Chromium for a. a cubic cluster with ρ =
0.167 and b. a spherical cluster with ρ = 0.195; both clusters contain approximately
850 sites
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Fig. 3. s, p, d and total (bold line) densities of states obtained with 24 levels of the
continuous fraction for bulk non magnetic Chromium for a. a cubic cluster with ρ = 0.25
and b. a spherical cluster with ρ = 0.325; both clusters contain approximately 3900
sites

together all clusters built previously. In the first construction, if the unit cell is
longer than a/2, all non equivalent sites are not included in one cluster (Fig. 4.a).
This is problematic when interactions between distant atoms are studied because
one of the atoms is outside the cluster and no direct interactions are taken into
account. The second cluster construction solves this problem by including all
atoms of the unit cell in the cluster. However, this long cluster breaks the cubic
symmetry and the different sites are no more equivalent from the point of view
of the recursion calculation.

In order to have an idea of the fluctuations introduced by such a long cluster,
the bulk antiferromagnetic Chromium situation is considered where all atoms are
equivalent and the length n of the unit cell is artificially increased. With exact
clusters, the result does not depend on the size of the cell. The results obtained
with the “inexact” cluster are presented on Table 3. The local magnetic moment
fluctuates only very slightly (fluctuations from site to site smaller than 10−5 µB)
but it decreases when the unit cell is increased. The on-site energy shows more
pronounced fluctuations from site to site. This shows clearly that the size and
the shape of the cluster play an essential role on the calculated properties when
the unit cell is varied. This is exactly what is usually done for multilayers where
the properties are studied as a function of the layer thickness.
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...     ...

...     ...

a.

b.

Fig. 4. Schematic representa-
tion of the two kind of clu-
sters considered for long unit
cells (dashed line) containing a
large number of non equivalent
sites (filled circles): a. a set of
cubic clusters centered on each
non equivalent site are built, b.
an unique cluster containing all
clusters of the (a) situation is
built

Table 3. Magnetic moment values (M) and energy on the sites i in the unit cell of
length n which are not equivalent in the “inexact” unique cluster relative to the value
obtained with a single atom in the unit cell ∆E(i) = E(i) − E(0, n = 1)

M ∆E(0) ∆E(1) ∆E(2) ...

(µB) (meV) (meV) (meV) ...

n = 1 0.6001 0

n = 2 0.5868 −0.52

n = 3 0.5796 −0.50 −0.69

n = 4 0.5743 −0.68 −0.72

n = 5 0.5731 −0.75 −0.75 −0.75

n = 6 0.5727 −0.76 −0.76 −0.76

n = 11 0.5725 −0.76 −0.76 −0.76 ...

3 Periodic Versus Real Space Cells for Studying Bulk
Magnetic Wall in Cr

The study of the Interlayer Magnetic Couplings (IMC) in FemCrn as a function of
n requires the determination of the total energy from the electronic structure for
various interlayer magnetic arrangement (IMA). Usually, they are restricted to
collinear “ferromagnetic” (F) and “antiferromagnetic” (AF) IMA corresponding
respectively to parallel and antiparallel magnetisation of successive Fe layers.
The IMC are positive (respectively negative) as expected from the occurrence
of a central magnetic defect in the Cr spacer when its thickness corresponds to
an odd (even) number of atomic layers with an AF (F) interlayer arrangement
[11]. For large spacer thickness, this defect becomes a bulk wall in the [001]
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direction in a layered antiferromagnetic crystal. This bulk wall resembles to a
Bloch wall in a ferromagnet separating two domains in the limit of a very strong
anisotropy giving collinear magnetism. In the present case, the bulk wall in a
antiferromagnet corresponds to an antiphase in the layered antiferromagnetic
order. It is easy to build such magnetic configurations using periodic or real
space cells. The periodic cell consists in a Cr1Cr2n−1 superlattice with an AF
interlayer arrangement between the Cr1 layers (Fig. 5.a). The real space cell
consists in a block of 2n − 1 atomic planes on which the wall is induced by a
symmetry relative to the central atomic plane is applied (if this plane has a
zero index, the symmetry corresponds to a magnetic moment on the i-th atomic
plane given by Mi = −M−i), this block being surrounded by blocks for which
the magnetic moments are frozen in a AF bulk-like configuration (Fig. 5.b).

Cr1 Cr1 Cr1Cr2n−1 Cr2n−1

a.

b. Symmetry

Real Space 
Cell

AF frozen 
block

AF frozen 
block

Fig. 5. Schematic representation of the cells used for calculating the bulk magnetic wall
in AF Cr: a. a periodic cell built like a Cr1Cr2n−1 superlattice with an AF interlayer
arrangement, b. a real space cell, containing 2n−1 atomic planes with a symmetry ap-
plied relative to the central atomic plane reversing the magnetic moments, surrounded
by bulk-like frozen AF Cr blocks

The calculation of the magnetic structure using a periodic cell is similar to the
one of FemCrn superlattices: the Fermi level EF is given by the global neutrality
requirement:

∑
i,l

∆Ni,l = 0. (20)

With the real space cell, the situation is more complex because the two semi-
infinite bulk-like frozen AF Cr blocks fix EF to the bulk value. The local energy
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levels εi,l are adjusted requiring the local neutrality:
∑

l

∆Ni,l = 0 (21)

which is a reasonable approximation since the charge variations in transition
metals are usually small.

In this section, the study is restricted to a d description, because for collinear
magnetism, the results obtained with this band structure description are more
than qualitatively correct [12]. The characteristics (extent and energy) of the
AF bulk wall can be determined with both cells using large thickness. In this
paragraph, by increasing n, the two approaches (periodic and real space) are
compared and the minimal value for n, for which the characteristics of the bulk
wall do no more change significantly, is determined. With a periodic cell, the
criterion is to recover the bulk value of the magnetic moment on the Cr1 atomic
plane and, with the real space cell, it is to have a continuous behaviour at the
frontier between the cell and the “frozen” blocks. Fig. 6 presents these values a
function of n. The criterion is more rapidly satisfied with a real space cell than
with a periodic one. Moreover, all magnetic moments are found equal to zero
for periodic cells with n < 9 whereas with this value for n, 90 % of the bulk
moment is reached with the real space cell. This result is not very surprising
since, with the real space cell, the moment at the frontier between the cell and
the “frozen” blocks is strongly maintained by the proximity of a frozen bulk
magnetic moment on one side and only slightly reduced by the magnetic defect
on the other side. For periodic cells, the magnetic defect cancels all moments
in too small cells. This illustrates the efficiency of the use of real space cells for
studying non interacting magnetic configurations.

Using the real space approach, the characteristics of the bulk collinear ma-
gnetic wall in Cr can now be investigated. The insert of Fig. 7 shows the magnetic
moment profile of the wall: its extent is found approximately equal to 40 atomic
planes. This shows that a frustration in the Cr AF order has repercussions over
a large range of planes making this spacer particularly suited for studies with
the present light approach since a large number of Cr atoms are concerned. Fi-
nally, the asymptotic limit of the energy of this wall as a function of n seems to
be γCr = 21 meV per in plane atom (Fig. 7). This energy corresponds to the
energy of the interlayer couplings obtained for large Cr thickness demonstrating
that the coupling energy does not decrease in the collinear restriction when the
spacer thickness increases in such Fe/Cr superlattices.

4 Non-Collinear Magnetism

4.1 Continuous Fraction Expansion
and Non-Collinear Magnetism

All studies presented in the previous section have been realized in the collinear
magnetism framework which saves computer time but represents a strong limi-
tation as compared to experiments. The band structure non-collinear magnetism
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Fig. 6. Magnetic moments values relative to the bulk value on the Cr1 atomic plane
(filled squares) of the Cr1Cr2n−1 periodic cell and on the atomic plane at the frontier
between the cell and the “frozen” blocks (open circles)

allows to include the angular degree of freedom in the self consistent calculation
[13,14]. The magnetic moment is a vector having 3 components Mx, My and
Mz or can be described by its magnitude Mr and two spherical angles θ and φ.
First, the input hamiltonian expression has to be modified in order to take into
account the varying local spin quantization axis ζi (whose direction is given by
the two usual spherical angles θi and φi) for each site i and, second, to determine
the components Mr,i, Mθ,i and Mφ,i of the output magnetic moment.

The hamiltonian of (16) can be rewritten as a sum of a band Hband and an
exchange Hexch hamiltonian where:

Hband =


∑

i,λ

|i, λ〉(ε0i,λ + Ui,l(λ)∆Ni,l(λ))〈i, λ|

+
∑

(i,λ) (j �=i,µ)

|i, λ〉βλ,µ
i,j 〈j, µ|


(

1 0
0 1

)
(22)

and

Hexch =
∑
i,λ

|i, λ〉
−Ii,l(λ)Mi,l(λ)

2
〈i, λ|

(
cosθi e−iφisinθi

eiφisinθi − cosθi

)
. (23)

In these expressions, the spin part of the hamiltonian is represented by the 2×2
matrix which is site dependent only in Hexch. Expression (23) is obtained by ap-
plying a rotation on the σz Pauli matrix in order to align the local quantization



448 Clara Cornea and Daniel Stoeffler

0 10 20 30
n

0

5

10

15

20
E

ne
rg

y 
 (

m
eV

/in
 p

la
ne

 a
to

m
)

−30 −20 −10 0 10 20 30
Atomic plane

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

M
ag

ne
tic

 m
om

en
t  

 (µ B
)

Fig. 7. Energy (in meV per in plane atom) of the bulk collinear magnetic wall as a
function of the size n of the real space cell. The insert presents the magnetic moments
profile of the wall

axis ζi with the global z axis.
The PDOS on site i for the symmetry λ is obtained with the recursion tech-

nique by setting the starting element |0〉 of the recursion basis equal to |i, λ〉. If
the spin states are represented with the z quantization axis by a two elements
vector, we have:

|i, λ, σλ = +〉 = |i, λ′〉
(

1
0

)
, |i, λ, σλ = −〉 = |i, λ′〉

(
0
1

)
(24)

where λ′ corresponds to the symmetry of the spin symmetry λ. The PDOS on
an arbitrary axis ζ defined by the two spherical angles (Θ,Φ) in the spin space
is obtained by starting with the following initial recursion basis element:

|i, λ, σλ = +〉ζ = |i, λ′〉
(

e−iΦ/2cosΘ
2

e−iiΦ/2sinΘ
2

)

|i, λ, σλ = −〉ζ = |i, λ′〉
(

− eiΦ/2sinΘ
2

eiΦ/2cosΘ
2

)
. (25)

For the determination of Mr,i, Mθ,i and Mφ,i using (19), the majority and mi-
nority spin states densities of states have to be calculated for all sites i and
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symmetries λ′ for ζ = ζi aligned with ur,i (Θ = θi, Φ = φi), for ζ aligned with
uθ,i (Θ = θi +π/2, Φ = φi) and for ζ aligned with uφ,i (Θ = π/2, Φ = φi +π/2).

The first step of the non-collinear study has been done using a d restricted

δθδθ

[001]
direction

Fig. 8. Schematic representation of the slightly non-collinear magnetic configuration
built by tilting the magnetic moment of one over two (001) atomic plane by a small
angle δθ

band structure description. In most cases studied, a discontinuous behaviour
between collinear and slightly non-collinear calculations has been found. For ex-
ample, a slightly non-collinear magnetic configuration by tilting the magnetic
moment directions of half the (001) atomic planes by a small angle δθ is built as
shown by Fig. 8. An antiferromagnetic order like in Cr is obtained for δθ = π.
When δθ is varied starting from zero (ferromagnetic order) and increased pro-
gressively, a nice continuous behaviour should be obtained. This is not obtained
with a d band structure as shown by Fig. 9: the magnetic moment and the
energy show rapid and large variations when δθ is varied from zero to 2◦. On the
contrary, the expected nice behaviour is obtained with a spd band structure as
shown on the same figure. This peculiar behaviour comes from the not spin (+)
and (−) mixed d densities of states in the ferromagnetic collinear configuration
(δθ = 0): the (+) and (−) d densities of states are determined completely inde-
pendently from a calculation where all 2× 2 matrices of (25) are diagonal. Since
it is assumed that the tight binding parameters are not spin dependent, the (+)
and (−) densities of states are the same (they have the same band width W and
are only split in energy by Ii,dMi,d) but they have different band limits (Fig. 10)
and the (+) and (−) spin recursion coefficients ai,λ

n have different ai,λ
∞ limits:

ai,d,+
∞ =

εi,d,+
min + εi,d,+

max

2
= ai,d,−

∞ − Ii,dMi,d

bi,d,+
∞ = bi,d,−

∞ =
(
W

4

)2

(26)

When, the magnetic configuration is non-collinear (even slightly non-collinear),
the (+) and (−) spin states are mixed and the (+) and (−) densities of states
have the same band limits (this is not exactly the case in Fig. 10 because only 8
recursion levels are used but larger band widths are obtained) and the recursion
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Fig. 9. Magnetic moments and energy variation as a function of the angle δθ of the
magnetic configuration represented in Fig. 8 obtained with a d (filled circles) and with
a spd (open circles) band structure

coefficients (ai,λ
n , bi,λ

n ) should have the same (ai,λ
∞ , bi,λ

∞ ) limit:

ai,d,+
∞ = ai,d,−

∞

bi,d,+
∞ = bi,d,−

∞ =
(
W + Ii,dMi,d

4

)2

. (27)

This explains the large differences in the densities of states represented by Fig. 10.
The most significant changes are mainly noticeable at the top of the majority
spin band where a large peak occurs around one eV even for a very small δθ value.
Such an unphysical behaviour is of course not obtained with an spd hamiltonian.
In this case, the d band which carries the magnetism is hybridised with the s and
p bands having a large band width and consequently the recursion coefficients
limits ai,λ

∞ are nearly insensitive to changes in the magnetic configuration.
For non-collinear studies, a restricted d hamiltonian has to be used very

carefully in order to avoid unphysical results related to numerical problems in
the continuous fraction expansion. All these problems are nicely solved when a
spd hamiltonian is used.

4.2 Angular Dependence of the Interlayer Magnetic Couplings in
Fe/Cr Multilayers

The interlayer magnetic couplings discussed previously can now be studied in
the non-collinear framework and their angular dependence can be investigated.
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This is done by fixing the angle ∆θ between the directions of the inner magnetic
moments of successive ferromagnetic layers during the self-consistent calculation
as displayed by Fig. 11. During the calculation, all not fixed magnetic moments
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Fig. 11. Schematic representation of the magnetic configuration considered for the cal-
culation of the interlayer magnetic couplings. Each vector corresponds to the magnetic
moment of all atoms in the (001) atomic plane which are equivalent

are free to rotate and self-consistency is assumed to be achieved when the output
perpendicular components Mθ,i and Mφ,i on all these sites i are nearly equal to
zero. In this paper, the angular variation is restricted to θ in order to reduce the
computer time but also because it has been checked that all magnetic moments
vectors are in the plane defined by the two fixed magnetic moments.

Because the d states are the most essential for the magnetism, the effective
exchange integrals Is and Ip are usually equal to zero. However, if this is usually
arbitrarily assumed, setting Is = Ip = 0 is now required because we obtain self-
consistency by an iterative way for non-collinear solutions. This comes from the
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expression of the output magnetic moment in terms of s, p and d contributions
in the input u(in)

i,r and u(in)
i,θ spherical basis:

M
(out)
i,r = M

(out)
i,r,s + M

(out)
i,r,p + M

(out)
i,r,d

M
(out)
i,θ = M

(out)
i,θ,s + M

(out)
i,θ,p + M

(out)
i,θ,d

M(out)
i = M

(out)
i,r u(in)

i,r + M
(out)
i,θ u(in)

i,θ . (28)

The magnetic moment used as input for the next iteration is obtained by varying
θi in order to align the local quantization axis with the direction of the output
magnetic moment given by:

M(next in)
i = M

(next in)
i,r u(out)

i,r

= M(out)
i (29)

in the output u(out)
i,r and u(out)

i,θ spherical basis. The s, p and d decomposition of
the next input magnetic moment has to be obtained:

M
(next in)
i,r = M

(next in)
i,r,s + M

(next in)
i,r,p + M

(next in)
i,r,d (30)

which is equal to the magnitude of the output magnetic moment vector
√

(M (out)
i,r,s + M

(out)
i,r,p + M

(out)
i,r,d )2 + (M (out)

i,θ,s + M
(out)
i,θ,p + M

(out)
i,θ,d )2. (31)

However, this s, p and d decomposition is lost when the magnitude of M(out)
i

given by (31) is calculated. If Is = Ip = 0, the results are the same whatever
the values of M (in)

i,r,s and M
(in)
i,r,p are (they do not contribute to the exchange field)

and we have to do the self-consistent calculation only for the d component of
the magnetic moments:

M
(next in)
i,r,d =

√
(M (out)

i,r,d )2 + (M (out)
i,θ,d )2. (32)

The calculation is assumed to be converged when

Maxi{|M (out)
i,r,d − M

(in)
i,r,d|} < ε

Maxi{|M (out)
i,θ,d |} < ε

Maxi{|E(out)
tot − E

(in)
tot |} < ε′ (33)

with ε = 5 × 10−5 µB and ε′ = 10−5 eV.
Fig. 12 presents the interlayer magnetic couplings obtained with the d and

the two spd tight binding parameters as a function of ∆θ for Fe5Cr4 and Fe5Cr5
superlattices. Around the energy minimum, the coupling energy follows a para-
bolic expression C+(∆θ−π)2 for n = 4 and C+(∆θ)2 for n = 5 as predicted by
a phenomenological model [15]. The couplings obtained with the d tight binding
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Fig. 12. Interlayer magnetic couplings ∆E(∆θ)−E(π or 0) obtained with the d (filled
diamonds) and the spd tight binding parameters without (filled circles) and with (filled
squares) a smaller interfacial Id as a function of ∆θ for Fe5Cr4 and Fe5Cr5 superlattices.
The open symbols correspond to the collinear solution

parameters follow the parabolic function over the whole range of ∆θ considered.
The collinear solution obtained for the frustrated configuration does not corre-
spond to the solution obtained for ∆θ = 0 (n = 4) and π (n = 5) and
has a higher energy. This is not very surprising since, with these parameters,
the Fe and Cr magnetic moments do not vary significantly when ∆θ varies and
the local angles θi vary nearly linearly with ∆θ as previously reported [16]. Such
a nearly constant magnetic moment magnitude behaviour corresponds exactly
to the phenomenological model which assumes a helical configuration in a Hei-
senberg model for the antiferromagnetic spacer. The behaviour of the coupling
energies for spd tight binding parameters is completely different: they follow the
parabolic function only over half the range of ∆θ considered. This is particularly
pronounced when the interfacial Cr Id is reduced from 0.96 eV to 0.90 eV (in
order to have a better agreement with ab initio calculations) where the coupling
energies show a maximum at ∆θ = 0 (n = 4) and π (n = 5). Moreover, the
frustrated collinear solution energies are nearly degenerate with the ones of the
corresponding solution obtained with the non-collinear calculations. For exam-
ple, for Fe5Cr4 superlattices, during the decrease of ∆θ from π to 0 (i) the Fe
magnetic moments have a nearly constant magnitude (ii) the magnitude of the
magnetic moments on the Cr atoms decreases strongly when ∆θ reaches 0 and
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the magnetic moment of the central Cr atomic planes nearly vanishes, (iii) the
local angles vary linearly when ∆θ decreases from 180◦ down to approximately
60◦; for smaller ∆θ values they vary very rapidly and reach values corresponding
to the frustrated collinear magnetic configuration for ∆θ = 0.

This result explains qualitatively the different behaviours experimentally
obtained for FeCo/Mn superlattices where the parabolic function applies [17]
and for Fe/Cr superlattices where the saturation is better reproduced with a
J1.cos(∆θ) + J2.cos2(∆θ) expression for the coupling energy [18].

4.3 Step Induced Non-Collinear Magnetism

In the previous paragraph, the non-collinear character is induced by the variation
of ∆θ. This is similar, for n = 4, to the situation where an increasing external
magnetic field is applied on the multilayer. Non-collinear magnetic configura-
tions can also be obtained when interfacial imperfections frustrate the natural
magnetic order in the multilayer.

This is illustrated by Fig. 13 for interfacial atomic steps. Because Cr is an-

tCr = 4 APtCr = 5 AP tCr = 5 AP tCr = 4 AP

a. b.

Fig. 13. Schematic representation of the frustration induced by an interfacial atomic
step in an Fe/Cr/Fe sandwich: the Cr thickness tCr variation from 4 to 5 atomic planes
(AP) a. splits the second Fe layer into domains of opposite magnetisation when the
interfacial coupling is preserved or b. induces a 90◦ interlayer arrangement when the
interfacial coupling is partially frustrated

tiferromagnetic, the sign of the interfacial Cr magnetic moment changes from
one (001) atomic plane to the next. If the antiparallel interfacial Fe-Cr coupling
and the Cr antiferromagnetic order (for small Cr thickness) are preserved, the
interlayer magnetic coupling changes from AF to F when the Cr thickness tCr
varies from n = 4 to n = 5 atomic planes at the atomic step (Fig. 13.a).
The second Fe layer is then split into domains of opposite magnetisation and
the domain walls correspond to the steps [19]. However, if we allow non-collinear
magnetism, the second Fe layer can be nearly monodomain if its magnetisation is
perpendicular to the one of the first Fe layer as shown by Fig. 13.b where we have
assumed that only the interfacial Fe-Cr coupling is partially frustrated. This be-
haviour, resulting from the competition between the strong Fe ferromagnetism
and the fluctuations of the interlayer coupling, is usually invoked for explaining
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the occurrence of 90◦ interlayer arrangements but does not result from an int-
rinsic biquadratic interlayer coupling. The aim of this part is to use our method
to determine explicitly the magnetic moment map for such configurations.

For these calculations, all magnetic moments are free to rotate until self-
consistency is achieved. However, because we do not include the spin-orbit cou-
pling, a global rotation can be applied on all moments without changing the so-
lution (there are no privileged directions for the magnetisation). Consequently,
when all moments are effectively free to rotate, the calculation can never con-
verge because a global rotation can occur during each iteration and θi can never
reach its asymptotic value. Fixing arbitrary one moment (on site 0 for example)
and allowing all others to rotate is not the best way to obtain the self-consistent
map: the torque applied on the fixed site by all other sites is usually very large
and a large number of iterations is needed in order to reduce significantly M0,θ,d

and to satisfy the convergence criteria (33) on all sites. A better way is to applied
a global rotation at each iteration in order to keep the moment on a given site
(the site 0) fixed in direction. The value for θi at the next input is then

θ
(next in)
i = θ

(out)
i − θ

(out)
0 (34)

and the angular self-consistency is obtained when

Maxi{|M (out)
i,θ,d − M

(out)
i,r,d .θ

(out)
0 |} < ε. (35)

In this case, the final map is obtained when the magnetic moments do no more
rotate relatively each others even if they continue to rotate globally from one
iteration to the next.

Superlattices with atomic steps at one Fe/Cr interface like in Fig. 13 are mo-
delled by periodic superlattices having a perfectly flat Fe layer separated from
a rough second Fe layer by the Cr spacer with varying thickness. In the cases
considered in this paper, i.e. atomic steps along the [010] direction with flat ter-
races having all the same size of 5 atomic rows, the cell corresponds to the lateral
juxtaposition of 5 Fe5/Cr5/Fe5/Cr5 and 5 Fe5/Cr4/Fe7/Cr4 cells (see Fig. 14).
The total real space cell contains 110 non equivalent sites. The calculations have
been done using the d restricted parameters and the two sets of spd parame-
ters previously used. The magnetic moment map obtained with the d restricted
parameters of Fig. 14 shows clearly that (i) the rough Fe layer is structured in
domains of opposite magnetisation corresponding exactly to the terraces, (ii)
only the Fe atoms at the border line of the domains have a local magnetic mo-
ment perpendicular to the others, and (iii) the Cr spacer layer displays only a
slight non-collinear character. This result does not correspond to the expected
90◦ interlayer arrangement and presents a strongly reduced magnetisation of the
‘rough’ Fe layer. On the contrary, with the spd parameters, the ‘rough’ Fe layer
is (i) only slightly structured in magnetic domains having their magnetisation
making an angle of approximately 80◦ and not 180◦, (ii) the Cr spacer layer pre-
sents a more pronounced non-collinear character, and (iii) the magnetisation of
the ‘rough’ layer, which is only slightly reduced, is preferentially perpendicular
to the one of the flat Fe layer. The two sets of spd parameters used in this work
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Fig. 14. Magnetic moment maps of a Fe5.5Cr4.5 superlattice having a perfectly flat 5
atomic planes thick Fe layer (bottom layer) and a rough Fe layer whose thickness varies
from 5 to 7 atomic planes (top layer) separated by a Cr spacer layer whose thickness
varies from 4 to 5 atomic planes obtained with the d restricted parameters (upper map)
and with the spd parameters and the reduced Cr interfacial Id (lower map). The arrow
gives the direction of the local magnetic moment whose magnitude is given. The Fe
sites have a grey arrow head and the Cr sites have a black one and a grey background
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give nearly the same result. This behaviour corresponds more to the expected
one.

5 Summary

It has been shown that real space methods like the recursion technique allow to
study the magnetic properties of complex systems in a much larger variety of
configurations than most of the other approaches. However, the use of a tight
binding description of the band structure limits the confidence in the results
and it has been exhibited that d restricted and spd parameters give significantly
different results when non-collinear magnetic solutions are allowed. This is why,
more accurate band structure description consistent with a real space approach
are needed and the TB-LMTO method is a possible candidate.
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